
Copyright 2014

Microsoft Solutions Framework (MSF) for Agile
Software Development

Stéphanas ESSAMA ZE

Does an agile software development process require real organizational change or can
an existing organization become more agile? How do the many traditional IT roles such
as the business analyst, architect, and tester become a more integrated part of an agile
process? Some recent work [1] debunks the myths that agile processes require on-site
customers, produce ad-hoc requirements and design, and cannot scale to large projects.
This article furthers this work by introducing innovative techniques from a new agile
process developed and used by projects within Microsoft. These techniques span the
traditional IT roles such as the business analyst, project manager, architect, developer,
tester, and release manager.

Many of today’s more popular agile software development processes concentrate strictly
on the developer and project manager. Traditional IT roles such as business analysts,
architects, and testers do not play a part in many of these agile processes. Yet, most
software product and IT organizations have these roles or their equivalent. What’s more,
they are not ready to give up on them. On the contrary, these roles are becoming more
valuable rather than less so as distributed development becomes more prevalent.

There are other practices such as the on-site customer, universal code ownership, pair
programming, and stand up meetings that have proven barriers to widespread adoption of
the more popular agile processes in many organizations. We have heard that it is mythical
that these practices are required to be agile [1]. However, we have not been offered
alternatives in a process form. This article introduces Microsoft Solutions Framework
(MSF) for Agile Software Development, a context-based, agile software development
process for building .NET applications [2]. This new process provides innovative
techniques to extend agile software development to all of the traditional IT roles.

MSF for Agile Software Development is composed of a set of proven practices
commonly used to build software at Microsoft. These practices have been collected in an
agile form and used by teams both inside and outside of Microsoft. This process provides
a set of practices that compliment each other; that is, the sum of the practices is greater
than each one used in isolation [3]. It also presents alternative practices to those
commonly found in many agile processes.

The Agile Pattern
The core of any agile software development process is the way that it partitions and plans
the work. Most agile processes share a similar method of planning or the “planning
game” [4]. To start, a project is divided into time boxes or fixed periods in which
“development” is done. These time boxes are called iterations. The iteration length is
usually fixed between two to eight weeks, although really small projects have been
known to set the iteration length in days or even hours.

In each time box, we schedule work from two lists, our version of the product backlog
[5]. The first is the scenario list which contains the names of scenarios (or scenario
entries) which serve as placeholders for necessary functionality. The second is the quality
of service requirement list which contains a list of requirements in areas such as
performance, platform, or security. The scenarios and quality of service requirements in
these lists are prioritized and rough order of magnitude estimates are initially provided by
the developers.

Scenarios and quality of service requirements are selected for the upcoming iteration and
placed in the iteration plan (the equivalent of the sprint backlog [5]). The amount of work
that is chosen is based upon the previous iteration’s velocity. Once selected for an
iteration, more detailed scenario information is written by the business analyst. After the
detailed information is provided, developers divide the scenarios into tasks and provide
more detailed costs for the tasks. The costs are checked to make sure no developer is
overloaded.

All of this planning occurs in a staggered manner. For example, our business analyst and
project manager are working on planning iteration 1 in iteration 0. Developers spend a
negligible portion of their time dividing the scenarios (and quality of service
requirements) into tasks and choosing their tasks for the next iteration. However, most of
their time is spent completing their tasks for the current iteration.

Development tasks are just one form of work break down that occurs. Testers and
architects also create tasks as part of the iteration plan. These roles are integrally involved
in ensuring that the solution is well architected and tested. They work in conjunction with
the developers, business analysts, and project managers to ensure the system holds
together. We will explore the nature of the architect and test roles later in this article.

Customer Collaboration over Contract Negotiation1
There is no denying that the on-site customer, a customer that can work directly with the
team to explain what is required of the system, is probably the best way to ensure success
of a project. Unfortunately, most users have jobs other than that of guiding the delivery of
a new system. It’s rather ironic that the very thing that leads to a successful project is
such a rare occurrence.

Lack of time is only one reason that our users may not be able to be on-site. They may be
located in a different city or even a different country. They may not be a part of our
company at all in the case of commercial product. In any of these circumstances, our
ability to interact with these users may be limited. When we obtain the opportunity to
interact, we need to make the most of it. We also need to be able to communicate the
essence of these interactions to the rest of the team.

Of course, this is exactly what the business analyst2 is supposed to do in most
organizations. In cases where travel is necessary to interact with users, they go. After all,

1 This is the third value statement from the Agile Manifesto [6]

nothing interesting happens in the office (NIHITO). We send these folks to meet with our
customers because sending developers on frequent trips has an adverse affect on the
project’s velocity. However, customer knowledge should not be locked in a few people’s
heads. Instead, it should be shared with the entire team.

Sharing details of a customer visit is commonly performed in most organizations with
trip reports. However, trip reports are an inadequate vehicle for providing anything more
than a cursory insight into the customers. Instead, Microsoft utilizes a technique called
“personas” as a basis for bringing the spirit of the customer to the entire development
team [7]. Personas are respectful, fictitious people that represent groups of users. The
personas describe usage patterns, knowledge, goals, motives, and concerns of a group of
users. The key to good personas is that they are memorable and represent a set of typical
customers.

Personas can also be compared to actors in use case models [8]. An actor is an entity that
interacts with the system. Human actors are instances of a role. The actor often contains
very little information other than this role name. Therefore, while an on-site customer can
usually provide us with better insight, an actor provides fewer details about the user
community than a persona. In fact, actors make the assumption that all of the people that
play a given role interact with the system in the same way.

Personas allow all of the members of the development team to obtain a deeper
understanding of the user community. Design, development, and test decisions can often
be made purely on the basis of a good persona. This allows the team to maintain velocity
even when the business analyst is “on the road.” Personas must be constantly refined as
new information is learned through interactions with the users. Posters of the personas
can be found on the walls in the halls of the Microsoft campus.

In addition to writing the personas, the business analyst also generates the scenario
entries in the scenario list. Once a scenario is scheduled for an iteration, the business
analyst writes up the details of that scenario. Personas are used in these scenario
descriptions to show how a user would interact with the system. This provides the
development team with an even deeper insight into the user community through
understanding how the personas interact with the system.

Finally, there is no substitute for reviews of system functionality after key iterations with
the customer. There are many vehicles for these reviews from actual working systems to
storyboards with screen captures in cases where it is impossible to simulate the
deployment environment in the area where the review is held. Experience at Microsoft
has shown that the use of personas in conjunction with scenarios leads to fewer changes
resulting from these reviews than when personas were not used. Ultimately, a certain
amount of change occurs when reviewing newly built systems even when an on-site
customer is present.

2 There are many different names for this role depending on whether the project is created for commercial
or internal use. The role name is not as important as the function that it performs.

Working Software over Documentation3
The goal of each iteration is to produce working software. The agile community believes
that those activities that do not contribute to this working software are considered lower
priority, if not detracting. Unfortunately, there is also a general belief that many of the
traditional architectural activities fall into this category.

To be clear, the agile philosophy does not hold a belief that architecture is unbeneficial.
Instead, it is a reaction to some of the large design efforts that were performed at the
beginnings of projects and later found to be flawed. This form of design is known as Big
Design Up Front (BDUF). The objection that the agile community has to BDUF is that
without working software, these efforts have no feedback mechanism. Therefore, quite a
bit of time went into these efforts without an understanding of whether they were
constructive or not. Many projects found that their implementation technology did not
support these designs and a considerable amount of time had been wasted.

Architecture is an important part of any project, agile or otherwise. It is especially
important in the larger agile projects [9]. However, architecture must lead as well as
reflect the structure and logic of the working code. Disconnected architectural efforts are
often greeted with skepticism by the developers who are building the pieces of the
system. However, understanding every detail of a system, especially a larger one is
beyond most people’s capability. Architects have their hands full just keeping a breast of
the changes for an iteration. Therefore, keeping the architecture synchronized should be
as simple as a whiteboard drawing and equally expressive [10].

Architects must therefore take a broad view of the system in addition to understanding a
certain depth. This breadth is important on larger, more complex projects. When a project
spans multiple teams, it is important to communicate responsibility and overall system
structure. As larger, agile projects require “teams of teams,” communication between the
teams becomes especially important. Representing the needs of the solution as a whole is
the responsibility of the architects.

To create an agile architecture, MSF utilizes shadowing. A shadow is an architecture for
the functionality to be completed in the iteration. The shadow leads the working code at
the beginning of an iteration as the architects get out in front of the development for the
iteration. During this time, the architecture and the working code are not in sync. This
shadow communicates any re-architecting or redesign that needs to occur to keep the
code base from becoming a stove pipe, spaghetti code, or one of the many other
architectural anti-patterns [12].

As the pieces of the leading shadow are implemented, the architecture begins to reflect
the working code base. The original parts of the system that were architected but not
implemented, now become implemented. When the architecture represents the working
code, we call the shadow a trailing shadow. As the sun sets on the iteration, all of the

3 This is the second value statement from the Agile Manifesto [6]

leading shadow should be gone and replaced strictly by trailing shadow. The trailing
shadow is an accumulation of the architectures over all of the iterations.

To keep architecture from becoming too detailed, we recommend that it be focused at the
component and deployment levels. For example, a smart client system for generating
budget information in an occasionally connected environment may consist of a Windows
client and a number of Web Services [13]. Each of these Web services, the underlying
database server, and the client itself would be components in this model. Remaining at
the component level, keeps architects from becoming the police of good design although
it never hurts to get tips from a more experienced developer.

The Microsoft terminology for theses deployable components, such as a Web service or
database server, is an application. One of the chief tools for the MSF architect is the
application diagram, the equivalent of the component diagram in the Unified Modeling
Language (UML). Since the application diagram focuses on more concrete entities such
as a Windows application, ASP.NET Web service, or external database, more system-
level detail can be provided.

Shadowing is applied at the component or applications level. A shadow application
initially communicates a desired change in the component level behavior of a system.
Shadow applications become invaluable when multiple teams are trying to coordinate
work across multiple components. Changes can be made without affecting the code base
until the architecture is ready to be implemented. Next, the code is generated4 or written
for the shadow and the leading shadow is removed and replaced with a trailing shadow.

The process for creating shadow applications is similar to the agile pattern used to
partition and plan the development work for the system. New architecture tasks are
created at the beginning of the iteration when any structural changes need to be made to
the architecture to accommodate the new scenarios or quality of service requirements.
Architecture tasks are like the development or coding tasks that are used to divide the
scenarios into the lower level pieces that can be assigned to a single developer. However,
they pertain to the architectural functions that must be performed to keep the system from
entropy5.

As a result of these tasks, the architect will add the endpoints or interfaces to the shadow
applications to reflect the needs of the new requirements. These endpoints can be
validated to ensure that the components, such as Web services, will work together
properly in the context of the deployment environment. The endpoints of these
applications can be connected to show how the components interact. Each application
may be distributed on a separate machine or clustered together on a single machine.

As the development team becomes ready to implement the scenarios, the endpoints are
deleted from the shadow applications and added to the application that represents
working code. Unit tests are created for each side of the component to ensure that the

4 Class or method structure for the high-level components can be generated from a shadow.
5 Entropy is the tendency for software to become brittle and difficult to add to or change over time.

proper functionality is provided and unit tested. Finally, working code is written for these
new endpoints.

At the end of the iteration, all of the proxy or unimplemented endpoints should be gone.
In other words, all of the architecture should be translated into working code. The
architectural model is not divorced from the working system but rather a reflection of it.
This makes the documentation for the component model match the working system. Unit
tests should be in place to make sure that the interfaces continue to work as new
functionality is added.

Shadow applications provide many advantages. They keep the high-level design of the
components in the system consistent with the code base. They allow larger teams to
define responsibilities in the context of an agile architecture. Shadow applications are
used to track the building of functionality across component boundaries. In this way, they
allow MSF for Agile Software Development to scale to larger, more complex projects.

Individuals and Interactions over Processes and Tools6
The idea of valuing people over processes and tools is not an indication to move away
from the use of today’s advanced tools. In fact, one of the roots of the agile revolution is
the advance of the compiler technology provided by our software development tools.
These compilers have made it easier for us to build systems incrementally. If compilation
times took hours, as it did in the past, instead of seconds or minutes, can you imagine
performing one refactoring at a time? Can you imagine running a unit test first to see it
purposely fail after waiting two hours for it to compile?

As our development tools have advanced, so has our capability to take advantage of these
advances in our development processes. However, developing software is ultimately an
activity for knowledge workers. The static nature of tools and processes is no match for
the adaptation that people can provide to deal with the ever changing nature of our
project and our industry.

Each project operates under a different climate and set of working conditions. The factors
that influence a project include size, criticality, deadline, and required quality. There is a
general perception that you always need to change the process to deal with the project
differences. Creating agile processes for each of these types of projects would mean that
there would be hundreds of new agile processes. Instead, we can understand how these
factors affect our process and utilize a context-based approach.

A context-based process allows us to tune the process to the context of our project. The
quality criteria are often context-driven by the types of project. Context-driven testing
bases the test approach on the factors of each project. The idea behind context-driven
testing is that the successful approach to testing one type of application may be criminal

6 This is the first value statement from the Agile Manifesto [6]

on another type. Test thresholds, metrics for determining the shipping quality, may be
used to govern the test and release approach.

The test thresholds are determined by the project team and recorded by the test team.
Only one test threshold is required of an MSF project. This is code coverage for unit tests
which determines the percentage of code that is tested by the set of unit tests. Code
coverage for unit tests is a metric that measures the percentage of code that is tested by a
set of unit tests. Like many of the other agile processes, MSF for Agile Software
Development requires unit testing as part of its development activities.

However, the effectiveness of this safety net is measured in MSF. Normal test-driven
development can account for 50-70% code coverage on many projects but to achieve
higher levels of code coverage requires more complex techniques such as mock objects
[14]. Some projects, like a data converter for a one time use, may be fine with a lower
unit testing code coverage threshold for this safety net. A critical system such as an
automatic pilot system probably requires a greater level of unit testing.

These metrics may be extended to govern the project as well. For example, maximum
bug debt, the maximum number of bugs that a developer may have, can be used to
determine when an iteration devoted to fixing bugs (called a bug allotment iteration)
should be scheduled. When the number of bugs exceeds this threshold, this is an
indication for the project manager to provide a whole or part of an iteration for fixing
bugs.

Responding to Change over Following a Plan7
Wouldn’t it be nice if you knew exactly what had to be done at the beginning of a
project? How about if there were absolutely no surprises occurred during the project?
There are a few very small, straightforward projects which enjoy this nirvana. When the
rest of us try to achieve this nirvana, we find ourselves faking a rational design process or
behaving as if change does not happen [11].

However, in the real world of software development, requirements change. We may also
discover an aspect of the technology that we are using that we didn’t know before. We
learn about the system that we are building in the process of building it. The fact is, we
can talk about these fairy tail projects where change does not occur but reality has a nasty
habit of creeping in.

So why not plan for reality rather than trying to aspire to a mythical standard that is
unattainable? In fact, we can do even better, we can use reality to develop more optimal
software development processes. While our business analysts are gathering the
requirements, what are our developers doing? How about our project managers? While
our project managers are planning, what are our developers doing? How about our
testers?

7 This is the forth value statement from the Agile Manifesto [6]

The answer is that they should be all working in parallel. While our business analysts
understand the requirements, our project managers are planning, our developers are
developing, and our testers are testing. How can we do this? We accomplish this through
staggering the work, setting up coordination points and providing only what is needed in
a just-in-time fashion. For example, we only write the scenarios for the upcoming
iteration, we plan one iteration at a time, architect only the necessary pieces, develop the
functionality in the iteration plan only for this iteration, and write test cases for
functionality planned in the current iteration.

Conclusion
Personas, shadow applications, and test thresholds are part of Microsoft’s new agile
software development process, MSF for Agile Software Development. These techniques
provide alternate ways to satisfy the value statements of the agile alliance. They have
been proven through their repeated use in delivering Microsoft software development
projects.

Becoming agile is as much about changing your state of mind as it is the adoption of new
practices. This article shows some new techniques to introduce agile software
development to many of the roles that have not been included in many of the agile
processes. By using these techniques in an agile way, we can extend agile software
development processes to the entire organization.

References
[1] McMahon, Paul E., “Extending Agile Methods: A Distributed Project and
Organizational Improvement Perspective”, CrossTalk, May 2005.

[2] The MSF for Agile Software Development Workbench,
http://lab.msdn.microsoft.com/teamsystem/workshop/msfagile/default.aspx.

[3] Miller, Granville. “Want a Better Software Development Process? Compliment It”,
IEEE IT Professional, September/October 2003 (Vol. 5, No. 5), pp. 49-51.

[4] Beck, Kent and Martin Fowler, Planning Extreme Programming, Addison-Wesley,
2000.

[5] Schwaber, Ken, Agile Project Management with Scrum, Microsoft Press, 2004.

[6] Beck, Kent et al., “Manifesto for Agile Software Development”,
http://www.agilemanifesto.org/.

[7] Cooper, Alan. The Inmates Are Running the Asylum : Why High Tech Products
Drive Us Crazy and How to Restore the Sanity (2nd Edition), Sams, 2004.

[8] Armour, Frank and Granville Miller, Advanced Use Case Modeling: Software
Systems, Addison-Wesley, 2000.

[9] Eckstein, Jutta. Agile Software Development in the Large: Diving into the Deep”,
Dorset House Publishing, 2004.

[10] Ambler, Scott, Agile Modeling: Effective Practices for Extreme Programming and
the Unified Process, Wiley, 2002.

[11] Parnas, David Lorge and Paul C. Clements, "A Rational Design Process and How to
Fake It", IEEE Transactions on Software Engineering, February 1986 (Vol. SE-12, No.
2), pp. 251 - 257.

[12] Brown, William J., Raphael C. Malveau, Hays W. "Skip" McCormick (III), Thomas
J. Mowbray, AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, J.
P. Wiley, 1998.

[13] Boulter, Mark, Smart Client Architecture and Design Guide, Microsoft Press, 2004.

[14] Astels, David, Test Driven Development: A Practical Guide, Prentice Hall, 2003.

