Copyright 2014

Microsoft Solutions Framework (MSF) for Agile
Software Development

Stéphanas ESSAMA ZE



Does an agile software development process require real organizational change or can
an existing organization become more agile? How do the many traditional IT roles such
as the business analyst, architect, and tester become a more integrated part of an agile
process? Some recent work [1] debunks the myths that agile processes require on-site
customers, produce ad-hoc requirements and design, and cannot scale to large projects.
This article furthers this work by introducing innovative techniques from a new agile
process developed and used by projects within Microsoft. These techniques span the
traditional IT roles such as the business analyst, project manager, architect, developer,
tester, and release manager.

Many of today’s more popular agile software develept processes concentrate strictly
on the developer and project manager. Traditiomatoles such as business analysts,
architects, and testers do not play a part in mainthese agile processes. Yet, most
software product and IT organizations have theksror their equivalent. What's more,
they are not ready to give up on them. On the eontithese roles are becoming more
valuable rather than less so as distributed devatop becomes more prevalent.

There are other practices such as the on-site mestainiversal code ownership, pair
programming, and stand up meetings that have prbasters to widespread adoption of
the more popular agile processes in many organizatiWe have heard that it is mythical
that these practices are required to be agile Hibwever, we have not been offered
alternatives in a process form. This article introgs Microsoft Solutions Framework
(MSF) for Agile Software Development, a context-based, agile software development
process for building .NET applications [2]. Thiswngrocess provides innovative
techniques to extend agile software developmeal tof the traditional IT roles.

MSF for Agile Software Development is composed ofse&t of proven practices
commonly used to build software at Microsoft. Thps&ctices have been collected in an
agile form and used by teams both inside and aatsidicrosoft. This process provides
a set of practices that compliment each other; if)ahe sum of the practices is greater
than each one used in isolation [3]. It also presaiternative practices to those
commonly found in many agile processes.

The Agile Pattern

The core of any agile software development proisete way that it partitions and plans
the work. Most agile processes share a similar ogktbf planning or the “planning
game” [4]. To start, a project is divided into tinh@xes or fixed periods in which
“development” is done. These time boxes are catiy@tions. The iteration length is
usually fixed between two to eight weeks, althoughlly small projects have been
known to set the iteration length in days or eveurh.



In each time box, we schedule work from two listsr version of the product backlog

[5]. The first is the scenario list which contaitte names of scenarios (or scenario
entries) which serve as placeholders for necedgsaryionality. The second is the quality

of service requirement list which contains a ligt requirements in areas such as
performance, platform, or security. The scenario$ @uality of service requirements in

these lists are prioritized and rough order of niagle estimates are initially provided by

the developers.

Scenarios and quality of service requirements elected for the upcoming iteration and
placed in the iteration plan (the equivalent of$peint backlog [5]). The amount of work

that is chosen is based upon the previous iteratigalocity. Once selected for an

iteration, more detailed scenario information istten by the business analyst. After the
detailed information is provided, developers divttle scenarios into tasks and provide
more detailed costs for the tasks. The costs agekeld to make sure no developer is
overloaded.

All of this planning occurs in a staggered manfer. example, our business analyst and
project manager are working on planning iteratiom lteration 0. Developers spend a
negligible portion of their time dividing the sceiws (and quality of service
requirements) into tasks and choosing their task#he next iteration. However, most of
their time is spent completing their tasks for ¢therent iteration.

Development tasks are just one form of work breakrd that occurs. Testers and
architects also create tasks as part of the itergtian. These roles are integrally involved
in ensuring that the solution is well architected #&ested. They work in conjunction with

the developers, business analysts, and project geemao ensure the system holds
together. We will explore the nature of the arattigend test roles later in this article.

Customer Collaboration over Contract Negotiation®

There is no denying that the on-site customer,stotoer that can work directly with the
team to explain what is required of the systermprabably the best way to ensure success
of a project. Unfortunately, most users have jabeothan that of guiding the delivery of
a new system. It's rather ironic that the very ¢hthat leads to a successful project is
such a rare occurrence.

Lack of time is only one reason that our users n@ybe able to be on-site. They may be
located in a different city or even a different noy. They may not be a part of our
company at all in the case of commercial productamy of these circumstances, our
ability to interact with these users may be limit¥dhen we obtain the opportunity to
interact, we need to make the most of it. We alsednto be able to communicate the
essence of these interactions to the rest of tra.te

Of course, this is exactly what the business atfaliss supposed to do in most
organizations. In cases where travel is necessantdract with users, they go. After all,

! This is the third value statement from the AgilaVfesto [6]



nothing interesting happens in the office (NIHIT@Je send these folks to meet with our
customers because sending developers on frequpsthias an adverse affect on the
project’s velocity. However, customer knowledgedtaot be locked in a few people’s
heads. Instead, it should be shared with the etet@e.

Sharing details of a customer visit is commonlyf@@ned in most organizations with
trip reports. However, trip reports are an inadégwahicle for providing anything more
than a cursory insight into the customers. Instdéidrosoft utilizes a technique called
“personas” as a basis for bringing the spirit af ttustomer to the entire development
team [7]. Personas are respectful, fictitious pedpht represent groups of users. The
personas describe usage patterns, knowledge, goatises, and concerns of a group of
users. The key to good personas is that they amonadle and represent a set of typical
customers.

Personas can also be compared to actors in usenoakas [8]. An actor is an entity that
interacts with the system. Human actors are ins®o€ a role. The actor often contains
very little information other than this role naniderefore, while an on-site customer can
usually provide us with better insight, an actoovyies fewer details about the user
community than a persona. In fact, actors makeaiseamption that all of the people that
play a given role interact with the system in thee way.

Personas allow all of the members of the developmeam to obtain a deeper
understanding of the user community. Design, dgrent, and test decisions can often
be made purely on the basis of a good persona.allbiss the team to maintain velocity
even when the business analyst is “on the roadsdPas must be constantly refined as
new information is learned through interactionshwtite users. Posters of the personas
can be found on the walls in the halls of the Msaft campus.

In addition to writing the personas, the businesalyst also generates the scenario
entries in the scenario list. Once a scenario Iedaled for an iteration, the business
analyst writes up the details of that scenario.s®®as are used in these scenario
descriptions to show how a user would interact wite system. This provides the
development team with an even deeper insight it® @iser community through
understanding how the personas interact with tetegy.

Finally, there is no substitute for reviews of gystfunctionality after key iterations with
the customer. There are many vehicles for thesewsvirom actual working systems to
storyboards with screen captures in cases whers Impossible to simulate the
deployment environment in the area where the revéeheld. Experience at Microsoft
has shown that the use of personas in conjunctitnsgenarios leads to fewer changes
resulting from these reviews than when persona® wet used. Ultimately, a certain
amount of change occurs when reviewing newly bsy$tems even when an on-site
customer is present.

2 There are many different names for this role dejrenon whether the project is created for comnaérci
or internal use. The role name is not as imporarthe function that it performs.



Working Software over Documentation®

The goal of each iteration is to produce workinfivgare. The agile community believes
that those activities that do not contribute t® thorking software are considered lower
priority, if not detracting. Unfortunately, there @also a general belief that many of the
traditional architectural activities fall into thésitegory.

To be clear, the agile philosophy does not holelgebthat architecture is unbeneficial.

Instead, it is a reaction to some of the large giesifforts that were performed at the
beginnings of projects and later found to be flawkuds form of design is known as Big

Design Up Front (BDUF). The objection that the agibmmunity has to BDUF is that

without working software, these efforts have nadtesck mechanism. Therefore, quite a
bit of time went into these efforts without an urslanding of whether they were

constructive or not. Many projects found that theiplementation technology did not

support these designs and a considerable amotimiehad been wasted.

Architecture is an important part of any projecgil@ or otherwise. It is especially

important in the larger agile projects [9]. Howevarchitecture must lead as well as
reflect the structure and logic of the working cobesconnected architectural efforts are
often greeted with skepticism by the developers whe building the pieces of the

system. However, understanding every detail of stesy, especially a larger one is
beyond most people’s capability. Architects hawarthands full just keeping a breast of
the changes for an iteration. Therefore, keepirgaithitecture synchronized should be
as simple as a whiteboard drawing and equally aspre [10].

Architects must therefore take a broad view ofdigtem in addition to understanding a
certain depth. This breadth is important on largesre complex projects. When a project
spans multiple teams, it is important to commumiaasponsibility and overall system

structure. As larger, agile projects require “tearheams,” communication between the
teams becomes especially important. Representengebds of the solution as a whole is
the responsibility of the architects.

To create an agile architecture, MSF utilishadowing. A shadow is an architecture for

the functionality to be completed in the iteratidime shadow leads the working code at
the beginning of an iteration as the architectsogeetin front of the development for the

iteration. During this time, the architecture ahe tvorking code are not in sync. This
shadow communicates any re-architecting or redetsigh needs to occur to keep the
code base from becoming a stove pipe, spagheti,cod one of the many other

architectural anti-patterns [12].

As the pieces of the leading shadow are implemenkedarchitecture begins to reflect
the working code base. The original parts of thetesy that were architected but not
implemented, now become implemented. When the taathre represents the working
code, we call the shadow a trailing shadow. Asdime sets on the iteration, all of the

% This is the second value statement from the Ad#mifesto [6]



leading shadow should be gone and replaced stitlyrailing shadow. The trailing
shadow is an accumulation of the architectures allef the iterations.

To keep architecture from becoming too detailedr@o®mmend that it be focused at the
component and deployment levels. For example, atsdiant system for generating

budget information in an occasionally connectedrenment may consist of a Windows

client and a number of Web Services [13]. Eachhek¢ Web services, the underlying
database server, and the client itself would bepamants in this model. Remaining at
the component level, keeps architects from becortiagolice of good design although
it never hurts to get tips from a more experiendeekloper.

The Microsoft terminology for theses deployable poments, such as a Web service or
database server, is application. One of the chief tools for the MSF architect hg t
application diagram, the equivalent of the comporiagram in the Unified Modeling
Language (UML). Since the application diagram f@susen more concrete entities such
as a Windows application, ASP.NET Web service,xdemal database, more system-
level detail can be provided.

Shadowing is applied at the component or applioatievel. A shadow application
initially communicates a desired change in the comept level behavior of a system.
Shadow applications become invaluable when multipeams are trying to coordinate
work across multiple components. Changes can be mwétout affecting the code base
until the architecture is ready to be implementéeixt, the code is generafear written
for the shadow and the leading shadow is removddeplaced with a trailing shadow.

The process for creating shadow applications iglainto the agile pattern used to
partition and plan the development work for thetesys New architecture tasks are
created at the beginning of the iteration when stnyctural changes need to be made to
the architecture to accommodate the new scenariapiaity of service requirements.
Architecture tasks are like the development or mgdasks that are used to divide the
scenarios into the lower level pieces that candsgyaed to a single developer. However,
they p%rtain to the architectural functions thastrhe performed to keep the system from
entropy.

As a result of these tasks, the architect will #adglendpoints or interfaces to the shadow
applications to reflect the needs of the new regménts. These endpoints can be
validated to ensure that the components, such as ¥devices, will work together
properly in the context of the deployment environmeThe endpoints of these
applications can be connected to show how the caemis interact. Each application
may be distributed on a separate machine or ckéstegether on a single machine.

As the development team becomes ready to implethenscenarios, the endpoints are
deleted from the shadow applications and addedhéo application that represents
working code. Unit tests are created for each sidthe component to ensure that the

* Class or method structure for the high-level congmis can be generated from a shadow.
® Entropy is the tendency for software to becomtlérand difficult to add to or change over time.



proper functionality is provided and unit testethaly, working code is written for these
new endpoints.

At the end of the iteration, all of the proxy orimplemented endpoints should be gone.
In other words, all of the architecture should benglated into working code. The
architectural model is not divorced from the wotksystem but rather a reflection of it.
This makes the documentation for the component imodé&ch the working system. Unit
tests should be in place to make sure that theféwes continue to work as new
functionality is added.

Shadow applications provide many advantages. Tleep khe high-level design of the
components in the system consistent with the cade.b They allow larger teams to
define responsibilities in the context of an agilehitecture. Shadow applications are
used to track the building of functionality acr@ssnponent boundaries. In this way, they
allow MSF for Agile Software Development to scalddrger, more complex projects.

Individuals and Interactions over Processes and Tools®

The idea of valuing people over processes and feai®t an indication to move away

from the use of today’s advanced tools. In facg ohthe roots of the agile revolution is

the advance of the compiler technology providedoby software development tools.

These compilers have made it easier for us to lsytems incrementally. If compilation

times took hours, as it did in the past, insteadexfonds or minutes, can you imagine
performing one refactoring at a time? Can you imagunning a unit test first to see it
purposely fail after waiting two hours for it toropile?

As our development tools have advanced, so hasapability to take advantage of these
advances in our development processes. Howeveelajgug software is ultimately an
activity for knowledge workers. The static natufeamls and processes is no match for
the adaptation that people can provide to deal whth ever changing nature of our
project and our industry.

Each project operates under a different climatesmtaf working conditions. The factors

that influence a project include size, criticalitgadline, and required quality. There is a
general perception that you always need to chamgetocess to deal with the project
differences. Creating agile processes for eachedd types of projects would mean that
there would be hundreds of new agile processeteddswe can understand how these
factors affect our process and utilize a conteseldaapproach.

A context-based process allows us to tune the psot®the context of our project. The
quality criteria are often context-driven by theeyg of project. Context-driven testing
bases the test approach on the factors of eackgbrdjhe idea behind context-driven
testing is that the successful approach to testhegtype of application may be criminal

® This is the first value statement from the Agilamifesto [6]



on another type. Test thresholds, metrics for dateng the shipping quality, may be
used to govern the test and release approach.

The test thresholds are determined by the progaintand recorded by the test team.
Only one test threshold is required of an MSF ptoj€his is code coverage for unit tests
which determines the percentage of code that iedely the set of unit tests. Code
coverage for unit tests is a metric that measurepéercentage of code that is tested by a
set of unit tests. Like many of the other agile gesses, MSF for Agile Software
Development requires unit testing as part of itgetlgpment activities.

However, the effectiveness of this safety net isasoeed in MSF. Normal test-driven

development can account for 50-70% code coveragmamy projects but to achieve

higher levels of code coverage requires more cax@ehniques such as mock objects
[14]. Some projects, like a data converter for @ ime use, may be fine with a lower
unit testing code coverage threshold for this gafedt. A critical system such as an
automatic pilot system probably requires a grelatezl of unit testing.

These metrics may be extended to govern the pragatell. For example, maximum
bug debt, the maximum number of bugs that a deeelopay have, can be used to
determine when an iteration devoted to fixing bcslled a bug allotment iteration)
should be scheduled. When the number of bugs egc#ed threshold, this is an
indication for the project manager to provide a leghor part of an iteration for fixing

bugs.

Responding to Change over Following a Plan’

Wouldn'’t it be nice if you knew exactly what had be done at the beginning of a
project? How about if there were absolutely no sses occurred during the project?
There are a few very small, straightforward prgesghich enjoy this nirvana. When the
rest of us try to achieve this nirvana, we findsalves faking a rational design process or
behaving as if change does not happen [11].

However, in the real world of software developmeatuirements change. We may also
discover an aspect of the technology that we aggubkat we didn’t know before. We
learn about the system that we are building ingiteeess of building it. The fact is, we
can talk about these fairy tail projects where geatioes not occur but reality has a nasty
habit of creeping in.

So why not plan for reality rather than trying tepaie to a mythical standard that is
unattainable? In fact, we can do even better, weuse reality to develop more optimal
software development processes. While our busirasalysts are gathering the
requirements, what are our developers doing? Hovutabur project managers? While
our project managers are planning, what are oueldpers doing? How about our
testers?

" This is the forth value statement from the AgilaVesto [6]



The answer is that they should be all working imapy@l. While our business analysts
understand the requirements, our project managersplanning, our developers are
developing, and our testers are testing. How candavihis? We accomplish this through
staggering the work, setting up coordination poartd providing only what is needed in
a just-in-time fashion. For example, we only writee scenarios for the upcoming
iteration, we plan one iteration at a time, ardaitnly the necessary pieces, develop the
functionality in the iteration plan only for thideration, and write test cases for
functionality planned in the current iteration.

Conclusion

Personas, shadow applications, and test threstaklpart of Microsoft's new agile

software development process, MSF for Agile SofeMaevelopment. These techniques
provide alternate ways to satisfy the value statgsnef the agile alliance. They have
been proven through their repeated use in deligekticrosoft software development

projects.

Becoming agile is as much about changing your stteind as it is the adoption of new
practices. This article shows some new techniguesintroduce agile software
development to many of the roles that have not bieeluded in many of the agile
processes. By using these techniques in an agile wa can extend agile software
development processes to the entire organization.

References

[1] McMahon, Paul E., “Extending Agile Methods: A idlributed Project and
Organizational Improvement Perspective”, CrossTillay 2005.

[2] The MSF for Agile Software Development Workbanc
http://lab.msdn.microsoft.com/teamsystem/workshapdiaile/default.aspx

[3] Miller, Granville. “Want a Better Software Deepment Process? Compliment It”,
IEEE IT Professional, September/October 2003 (¥pNo. 5), pp. 49-51.

[4] Beck, Kent and Martin Fowler, Planning ExtrerReogramming, Addison-Wesley,
2000.

[5] Schwaber, Ken, Agile Project Management withugt, Microsoft Press, 2004.

[6] Beck, Kent et al, “Manifesto for Agile Softwar Development”,
http://www.agilemanifesto.org/

[7] Cooper, Alan. The Inmates Are Running the Asylu Why High Tech Products
Drive Us Crazy and How to Restore the Sanity (2ddi&n), Sams, 2004.

[8] Armour, Frank and Granville Miller, Advanced &sCase Modeling: Software
Systems, Addison-Wesley, 2000.



[9] Eckstein, Jutta. Agile Software Developmenttlre Large: Diving into the Deep”,
Dorset House Publishing, 2004.

[10] Ambler, Scott, Agile Modeling: Effective Pramts for Extreme Programming and
the Unified Process, Wiley, 2002.

[11] Parnas, David Lorge and Paul C. Clements, &iddhal Design Process and How to
Fake It", IEEE Transactions on Software Engineerfgbruary 1986 (Vol. SE-12, No.
2), pp. 251 - 257.

[12] Brown, William J., Raphael C. Malveau, Hays 8kip" McCormick (lll), Thomas
J. Mowbray, AntiPatterns: Refactoring Software, lirectures, and Projects in Crisis, J.
P. Wiley, 1998.

[13] Boulter, Mark, Smart Client Architecture aneé$ign Guide, Microsoft Press, 2004.

[14] Astels, David, Test Driven Development: A Rieal Guide, Prentice Hall, 2003.



